Noncommutative geometry of foliations
نویسندگان
چکیده
منابع مشابه
Noncommutative Geometry of Foliations
We review basic notions and methods of noncommutative geometry and their applications to analysis and geometry on foliated manifolds.
متن کاملNoncommutative spectral geometry of Riemannian foliations
According to [9, 8], the initial datum of noncommutative differential geometry is a spectral triple (A,H, D) (see Section 3.1 for the definition), which provides a description of the corresponding geometrical space in terms of spectral data of geometrical operators on this space. The purpose of this paper is to construct spectral triples given by transversally elliptic operators with respect to...
متن کاملComputer Algebra of Vector Bundles, Foliations and Zeta Functions and a Context of Noncommutative Geometry
We present some methods and results in the application of algebraic geometry and computer algebra to the study of algebraic vector bundles, foliations and zeta functions. A connection of the methods and results with noncommutative geometry will be consider.
متن کاملNoncommutative rings and characteristic classes of foliations
The notion of a characteristic fibration is introduced. This fibration consists of a base space M and a set of fibres which are dimension groups associated to a noncommutative ring R. Every dimension group of the fibration is isomorphic to the first Betti group of M with a ‘positive cone’ depending continuously on the fibre. The characteristic fibrations are linked to the codimension–1 regular ...
متن کاملNoncommutative Spectral Geometry of Riemannian Foliations: Some Results and Open Problems
We review some applications of noncommutative geometry to the study of transverse geometry of Riemannian foliations and discuss open problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of K-Theory
سال: 2008
ISSN: 1865-2433,1865-5394
DOI: 10.1017/is008001006jkt029